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HEAT TRANSMISSION IN TEFJBOUNDARY

By L. E. Kalikbman

LAY-m*

Up to the present t5me for the heat transfer along a curved wall in .
a gas fluw only such problems have been solved for which the heat trans-
fer between the wall and ths Inmmpressible fluid was considered with ‘
physical constants that were independent of the temperature (the hy&m-
dynamic theory of heat transfer). On this assumption, valid for gases
only, for the ease of small MadI numbers (the ratio of the velocity of
the gas to that of sound) and small temperature drops between the flaw
and the well, the velocity field does not depend on the temperature
field.

~ 1941 A. A. Dorodnitsyn (reference 1) solved the problem on the. .
effect of the ccmqressibility of the gas on the boundary layer in the
absence of heat tremsfer. h this case the relation between the tempera-
ture field and the velocity field is given by the conditions of the

. problem (constancy of the total ener~).

In the present paper which deals with the heat transfer between the
gas and the wall for luge teqerature drops and large velocities use is
made of the above+entioned method of Dorodnitsyn of the introduction of
a new independent veriable, with this &Lfference, however, that the
relation between the taperature field (that is, density) and the velocity
field in the general case considered is not assumed given but is deter-
mined from the solution of the problem. The effect of the compressibility
arising frcm the heat transfer is thus taken into account (at the same
time as the effect of the ccqressibility at the large velocities). A
method is given for detemmlning the coefficients of heat transfer ad the
friction coefficients required in many technical problems for a curved
wall in a gas flow at large kkch nmbers and temperature @ops. The
method proposed is applicable both for Frandtl mmiber P = 1 and
for P+ 1.

*“@zodinamicheckaya Teoriya Teploperedachi.” Prik2adnaya Matematika
i Mekhanika, TomX, 1946, pp. 44H74.
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1. Statement of the Problem

We consider the flow over an arbitrary contour of the t~e of a
wing profile in a steady twtiimensional gas flow (fig. 1). For
supersonic velocities we take into aocount the existence of an oblique
density discontinuity (caapression shook) starting at the sharp leading
edge or a curvilinear head wave occurring ahead of the refile. For

7subsonic velocities we assume there are no shock waves value of the Mach
number of the approaching flow is less than the critical).

W9 denote by u, v the components of the velocity along the axes
x, Y> where x is the distance along the em of the profile from the
leading edge, y is the distsnce along the normal, T is the absolute
temperature, p the pressure, p the density, u the coefficient of
viscosity, k the coefficient of heat transfer, e the coefficient of
turbulence exohange, ~ the coefficient of turbulent heat conductivity,
~ the specific heat, and J the mechanical equivalent of heat.

U2
T*=T+—

2JoP

is the stagnation temperature

r
5Pa=—
P

is the velocity of sound

~=~

is the adiabatio ooefficlent

Wp
p.—

k

is the Prandtl number. The remaining notation is explained in the text.
The values of the magnitudes in the undisturbed flow are denoted by the
subscript CO, the values of the magnitudes at the wall by the subscript w. .

The probla consists in the solution of the system of equations
(reference 2)

.
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&( Pu)+$(Pv)=o

30$r=

P =P~T> u=@

where ~ is the gas constamb, and c and

h the solutim of the system eauations

n are constants.

(1.1) to (1.5) we start

(1.1)

(1.2)

(1.3)

(1.4)

out from considerations on the m-c and thermal boundary layer of a
finite (but variable) thickness. The flow outside the dynamic boundary
layer approaches the ideal (nonviscous) flow, nonvortic~ In frent of -
the shock wave and, in general, vorticeL behind the wave. Equation (1.4)
shows that the pressure is transmitted.across the boundary layer without
change, that is, the pressure YO(X) and the velocity on the boundary
of the layer U(x) may be considered as given functions of x. T&
flow outside the thezmal boundary layer we assume to occur without heat
transfer, that is, outside the thermal layer and on its boundam the
total ener~ 10 is Constemt:

U2 u:
JCPT + ~ = $

JCPT= + ~= JCPTO + ~= i.

Era this it fol.lowsthat the stagnation temperature T*
thermal boundary layer has a constant value

i.
T* =Too==

“

(106)

outside the

(1.7)

Thus the flow outside the thermal
is assumed naarly isothemell while for

?JG
P

boundary layer for small velocities
large subsonic”velocities isentropic.
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For supersonic velocities the entropy is constant up to the shock wave
while after the wave the entropy is constant along each flow line of the
external flow a%out the profile but variable from one flow line to the
next.

c The bound~y conditions of the problem are:

U=v= o, T* = 9?W for y=O (1.8)

where Tw = ~(x) isa given function. In the absence of external.heat

transfer (across the wall) we have instead of the second condition of

(9aequation (1.8) the cmnditlon — =

~Y yuo

u= u(x) for y =

T* = Too for y =

where 5Y and ~ are the values of y

boundary of the dynamic and the boundary

2. Fundamental Expressions for

o. Further

67(X)
(1.9)

+)

referring, respectively, to the
of the thermal layer.

the Temperatures

For P= 1 ecpation (1.3) gives the “trivial inte~” T*= Constant.
Taking Into account the seoond conditicm of equation (1.9), we obtain

()T=Too(l-ti2) ii=—
&

(2.1)

The temperature of the wall Is equal to the temperature of the adiabatic
stmtion:

(2.2)

The integral (2.1) corresponding to the case of the absence of external

.

.

.

and internal heat trsnsfer in the boundary layer,
()

~ =0 for P.
b y=o

4“

was obtained on the basis of the solution of A. A. Dorodnitsyn (reference 1).
.
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For P = 1, U = Ccmstant, ma q = constant,

likewise integrated independent of the solution
ecpations of

Jmposing the

T=

the system and gives the so-called

T* = au

boundary conditions we

[’00 1

IEmm equatitm (2.3)

u t*
-=7u to

-ti2+(!Fw -1)

we d-so obtain

+b

obtain

( )11-5

5

eqpatim (1.3) is
of the remaining
Stodola4rocco integral

(t* =T* – ~, to’ = Too - Tw)

(2.3)

()%=& (2.4)

(2.5)

The inte~al (2.4) corresponds to the case where there is similarity of
the velocity field with the field of the stagnation temperature drop
(equation (2.5)) and was used in the solution of the problm of the

about-a flat plate (reference 3).

In any more general case U + Constant
For (*)po+j ‘r

Constant or P + 1 the integral of (1.3) is not lmown in advance.

The existence of the trivial integral is not, however, the required
condition for the solution of the problem and this fact is fundamental
for what follows.

Let the function T*(x, y) or U(X, y) be Inte ala of the system
T(I-.1)to (1.5) satisfied by the boundary conditions equations (1.8)

SZld(1.9)). The temperature at an srbitrery point can then be represented
in the form

()

T*
T= Too ~-

;2

1
for $ (2.6)

[ ( )Ij

*
T =Too 1- fiz+ (-q– 1) l–q

to

.
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M is easily seen,

the second form .of

NACATMNQ. X229

the integrals (2.1) and (2.4) are particular cases of

the relation (2.6) for ~=

respectively. This relation permits expressing
temperature also the density end viscosity as a
and stagnation temperature drop.

3. Zkcpressionsfor the

Zhe pressure p at any
by the equation of Bernoulli

P= Po =

~essure, Density,

point within the

K

P@(l -&)-l

where pn is the pressure on the boundary of

t-
1 and —=

tn*
&

together ;ith the
function of the velocity

and Viscosity

boundery layer is dete~ned

(c)u5=—

r
(3.1)

2i

the layer (thermal or
dynsmic depending on which of themis thicker), p

?6!
is the pressure

on adiabatically reducing the velocity to zero in e tube of flow
passing through the shock wave. !Phedensity p at an embitrary point
within the boundary layer is determined by the equation of state (first
equation of (1.5)), equations (2.6) SZUI(3.1)

It

‘=””-(’-;-l (3.2)

where Pm is the density on adiabatic reduction of the velocity to zero.

The viscosity M is determined by the equation

f ( )1

t* n
P ‘woo l-ti2+(zvl)l-— (n x 0.75)

to*L

where I-Loocorresponds
the adiabatic reduction

(3.3)

to the temperature Too, that iS> is obtained on
of the velocity to zero.
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.

For any point

.?

7

ahead of the shock we have

K

.

.

P= pol(l - &)K-i

1

P = pol(l - @y-’

where pOl and L301 me, respectively, the pressure

adiabatically reducing the velocity to zero up to the
streamline with the shock.

(3.4)

●

and density on

intersection of the

As a scsle of the velocities it is possiple instead of the assumed
magnitude ~. to teke the critical velocity a* emd the local sound.

velocity a. As is lmown

u u—=
~?+ *kl ad ;=M we

a* = &l)/(K+l)@o. Substituting

obtain

M=

IIl+(K-l)M2/2

l+.Iirtegral.Relations of the Mcjmentuynand Energy in New Vmiahles

IIixmequations (3.1) ma (3.2) we obtain

(2.5)

*Ih orLer to distinguish various uses of the
subscripts 1 and 2 have been added by the NACA
translated version.

symbol X herein,
reviewer in the
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where PO is the density on the boundary of the layer (thermal.or .

dynemlo depending on which is the thicker). We represent equati~ (1.1)
and (1.2) in the form %

~ (PU2)+ + (WV) = ‘em’‘w’ ‘)*I

: (Wu) + $ (mu) - puuf = o

Subtracting the previous equation from the above we obtain

o0+Uutp —-1 +
P

From equation (3.2) we find

1

u-a
Po = P02(1 - F)

‘o ~ F -IF + (q - 1)(1 - t*/t**)—-=
P

l-w

.

●

(4.3)

Integrating equation (4.2) temnby term from y = O to y= +, if +>6y

andto y=~y if 5Y >% (for definiteness we assume that ~ > by;

the same result is obtained if we assume 5Y >~)j making use of the

relation (h.s))and taking into account the fact that starting from the
boundary of the -C layer the ~elocity u is constant along x and
the friction T is eqti to zero, we obtain
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.

.

(4.4)

.

where

is the frictional stress at the well.

We nuw represent equtions (1.2) and (1.3) in the form

a (Pvto*)~ (putO*) + & -.u~. o

(4.5)

Subtracting the second eqyatim
termby term from y = O to y

that ~ > 8Y), and remembering

aT
q =L-& ECndthe friotion T =

of the thermal layer we obtain

frcmthe first. integrating the result
. + (assumir@ as

that for + > by

++
are eqyal to

aiiovefor definiteness

the heat trsasfer

zero on the boundary

(4.6)
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where

*

is the intensity of the heat &nsf er

(4.7)

In solving the problem of the boundary layer tithout heat transfer
between the &s and the wall for large velooi%ies and P = 1,
A. A. Dorodnitsyn introduced the chmge in vsriables

R

f

K-.

7 = A(l-w) dy (4.8)
o l-#

Noting that the fumtionunder the_integral sign in equation (4.8) agrees
with the eqyession p/p~ for !J&= 1, we introduce a new independent -

variable
integrel
equation

of the analogo~-eqpation””containingin the function under the
si.~ the expression p/po2 for the genersd.ease according to
(3.2)

For ~w =

f

Y 1 (1 - w)~dy
o 1- TF + (q-l)(P.t*/to*)

(4.9)

1 the relation between the coordinates ~ and y depends on
A*

the unknown velocity profile. For ~= ~ equation (4.9] gives the ‘
tn

clxangein variables applied to the pr~blem of the heat intero~e of
the pZate with the gas flow. In this case the relation hetween q sad y
likewise depends only on the velocity profile.

the
but
not

As is seen fram equation (4.9) in the general case the relation between
coordinates o and y depends not o~onthevelocity yrofile U(X, Y), ●

also on the temperature-drop profile t (x, y) which likewise is
initially hmwn but is determined from the solution of the problem.

t
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.

Replacing the denSltY P in eqyations (4.4) sad (4.6) by its

e~ession (3.2) ~d P~s@ to we ~iables xs q we obtain

.

.

.

where 5 and
respectively,

A ere the values of the vsriable q
to the boundary of the dynamic and the

We denote the thickness of the loss in momentum

(4.11)

of the displacement in the plane xq, respectively, %Y

referring,
thermal layers.

and the thickness

(4.12)

we introduce the concept of the thickness of the energy loss (in the
plsne XV)

—

(4.13)

. This magnitude has a clesr physical meaning; nsmely, the magnitude 6
characterizes the difference between that total energy which the mass of
the fluid that flows in unit time tbrou@ a given section of the thezmal

i
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boundary layer would have if its stagnation temperature were equal to the
stagnation temperature of the efiernal flow and the true tdtsl energy of
this mass. The magnitude e thus represents in length units referred
to the temperature tO* the “loss” in total ’energydue to the heat
transfer. For smald.velocities the concept of the thickness of energy
loss agrees with the previously introduced concept of the thickness of
heationtent loss (reference 4). The magnitude

(4.14)

may be called the thickness of the thermal mixing.

With the ald of the magnitudes defined by equations (4.12), (4.13),
and (4.14) we represent the obtained Integral.relations of the momenta
end energy (equations (4.10) aad (4.2.2.))In the final.form

ae+uu
[

w 1
U?(T?J- 1) ‘w

dxu
H+2(H+l)— 0+ (4.15)

l-w U(l -w) ~e=~

de+ ul~+
to*t
—e %

F
=

dx to* P02UCP*O* [

**
o ).S=+z

dx
(4.16)

We note that the integration with respect to y (or v) may be tslcen
frcm O to w so that the relations (4.15) and (4.16) are general for
the theory of the boundary layer of finite
the asymptotic layer.

For small Mach numbers (the 6ffect of
the temperature drop) the relations (4.15)

thicl&ess and tie theory of

the compressibility due to ●

and (4.16) assume the form

(4.17)

.
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.

*ere to = To - T&, To ad. PO are, respectively, the temperature md

density of the isothemel flow outside the thermal Wunb layer (it
follcws frcm equations (2.6) end (3.2) if we set a~tely U = 0,
that is, according to equation;(3.5) M = 0) ● me ~~e ~stributim
aver the profile is deter@hed by the equation of Bernoullt for an
incompressible fluid.z

AS is seen from equations (4.15) end (4.16) @ d.so frm what fo~ows,
in the variables x, q the equatims of the-system (1.1) to (1.3) are
simplified and approach in principle the corresponding eqpations for the
incompressible fluids. For this reason the fundamental methods of the
theory of the boundary layer in an incwrpressible fluid may be generalized
to the case of a body in a gas fluw with heat interchange.

We @ve below the generalization of the method of Pohlhausen for
the case of the laminax layer and the logarithmic method of Frandtl-
K&& for the case of the turbulent layer. The proposed method of the
solution of the problem connected with heat Interchange permits, of
oourse, generalization of certain other problems in the theory of the
boun&xry layer in an incompressible fluid.

11. IAM3URB OUNWWIJUXRWTTHW -CHAI?GX

B~51G&AND~W-2

~. ~ormation of the Differential Eqyatlons

Assuming in equations (1.1) to (1-3) G = O @ ** = T* - %
substituting the values P$ Pj end y according to e~tions (3=1)
to (303], @ .trsmf mm these equtions to the new tidependent varf-
ables x = x’ and qs determined acoor~ to eqution (k*9). me
equations of trmsfomathn & the derivatives will be

. .
It

a a aa (1 - W’-l+a_,
S=S axaq %= ~ -fie + (~ -1)(1 -t*/to*) %

.

%wn equations (3.1) md (3.5)’we have

Poo -Po=

[
[ l%-j.po’~(+$ti+=ti+””a

l+*(,K-1)#

a whence setting M = O, we obtain

PO + * (POU2) = constant

% what follows we restrict ourselves to the case P = 1.
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~ooWe obtain (introducingthe notation yW = —

’02

r

J

(5.2)

(5.3)

.

If it is assumed approximately that “n= 1, the obtained
still further simplified.

J

system can be

6. (%neralization of the Method of Pohlhausen

We represent the velocity profile and the stagnation temperature
drop profile by the polynomials .

(6.1)
b
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.

To determine the coefficients of the polynomials we set up the

where

Cz= (l-n)
% - Too

9 v--

~@(L - u

Condition (6.3) fo~uws
u= ?= Oforq=o.

41 !- 4! ~—l)

from the eqmtion of motion (5.3) since
Iizrther, -

conditions

u buo
b2

-= 1, —-=
:=

O for :=1
u a(l@ ) u ‘ a(np5)2

From equation (5.3) for q = O, r.=% = O we obtain

[1
2

b2 t*+G a t*—— =0 for *=O
a(q/A)2 ‘O* a(q/A) tO*

(6.2)

(6.3)

(6.4)

(6.5)

Similarly to conditions (6.4) for the profile u/u we take for the
profile t*/tO* the conditions

t* ~ a t* o a2 t*—— = ——=0 for ~=1~= > (6.6)
a(q/A) ‘0* ‘ a(q/A)2 ‘O*

.
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By clifferentiating eqzations (5.1) and (~.3) ~~ rewect to V
with the subsequent equating of q to zero, it iS easy to obtain tie
conditions for the third derivatives of up and t*/to* at the wa13..
!I!heseconditions may be useful for v’erious”asPects of We ~~od of
Poh3&nzsen. Using conditions (6.5) and (6.6)-we obtain

3 -{ma
9 ‘2 =6-3B1, B3=-8+3B1, B4 =3-

a

conditions (6.3) and (6.4) we now find

12+-A2
~=6-3A1, JL3=-8+M1, Ah

6- (3 - ~~a)5/A’

In relations (4.15) and (4.16) there enter, besides O(x)
the fOUr *own f~CtiOnS TV, E, ~, ~. b COnStrUCti~

there were elso introduced the auxiliary functions 8 and A.
required six additional.equations are obtaineiiby substituting
tions (6.1) and (6.2) in equations (4.5), (4.7), and (4.I.2)to
We obtain

El (6.7)

=3-AI

(6.8)

and 6(X),
the profiles

The

?t:i) .

5 t9.,
+12 + la~ + 144

5*= OH=8 (6.9)
20 ‘ 1260

K

–11-m(l+ If-1
T
w = WOO% % s

8-B1
A* = ~=AT

A
where for ~<1

Ml = 6b@)2 -8b3($)3+ 3b4@4,

6-B1 16- ml
%= 60 ‘ b2= 42o ‘

K

(l-&lBl (6.10)

(6.11)

~l=b@-3b2 ($)2+ 3b3@3

5-B1 24- 5B1
b3=r b4=

2520

()A+b4;

.

.
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~om equations (6.1o) and (6.8) it is seen that the point
of the Uminar layer for the given boundary conditions is
by the condition ~’= –12

7. Dete?minationof the hitial ~onditions

For subsonic flow and also su~ersonic in those cases. .

of sepxcaticn
detemnined

%32Y%I?J%LZ%Y’K=O)0~.~tt=i.a;~=q~of ~
ofile a critical point U(0) = O is

equatimm (4.15) and (4.16) in which the derivatives
~a so forth, increase to M’infty if the fdti~ 0, e me not
subjected to certain special conditions.

Substituting the e~essions for TV, ~w> A* tiom equations (6.1o)

and (6.~) into equatims (4.15) and (4.16), multiplying the ~tter
by b and A, respectively, and equting to zero the coefficients of l/U
these conditi.cnsare obtained in the form

.

.
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In the absence of heat transfer (TW = 1) the first relation (7.1)
is a cubical equation in ~. Of its three roots (7.052, 17.75, and-70)
only the root (%)x=o = 7.052 satisfies the physical conditions. This

value of ~ is the one generally assumed initial condition in the theory
of the Mniner layer for the equation of K&m&Pohlhausen. The equations
(7.1) may be conveniently regarded as a system for determining the
initial values of (A2)Z4 and (A/8)x=0. We present the results of the

ccmqyztationof these values for 0< (5&)so<5 (for n= 0.75).

Iiw=o 0.05 0.10 0.50 1.00 1.50 2.00

A2 = o 0.3 0.7 4.05 7.05- 7.5 6.0

A- = 1.12 1.16 1.18 1.23
b

1.31 1.50 1.87

The-graphs of these results are sham in figure 2.

3.00

399

2.74

4.00

2.6

3.70

~ooo

1.9

4.86 ,

8. Methcd of Successive Approximations

Simple computation fornmlas can be obtained by generalizing the
method of E. Lyon (reference 5). At the same time we modify the method
of Lyon with the object of improving the convergence.

We multiply (4.15) by ~- and have

(8.1)

where

and L is a characteristic dimension. Setting k = 2(H + 2) we try
in the function _k to separate a certain principal pert constant for a
given value of ~; that is, we set

.

.

k= c1 + (k - cl), where 01 = cl(~)
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After simple transformations we obtain

R

=~n-2 1
v ‘[ () (

1
(1-@)%A&w-A2 :2 k-cl)

‘%
,

(8.3)

Assuming over a certain part of the boundary layer ‘~ < Z c X1 that
A+

the ratio ~ = h is constant with respect

mean value for the given se~nt, we sets

to 5? smd equal to the

1260(8 - Bl)
c = c1 + 2(–% - l)h = Cl + 2(~w - 1) $ (8.4)

20(5A12 + 12A1 + 144)

MultIplying equation (8.3) by ~ we obtain

.

Considering this equation as linesr in 8@~ we write its solution in
the form d

‘For ~ ~ Constant there is taken in the exponent c a constant

mesm vslue of ~w for each section.
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where

where C!= O for So = 0. Substituting under the integral (in the
function o and exponent o) oertain initial values of (X2)o and (A/8)0

we obtain a first approximate function ~ (S). The arbitrariness l-nthe
choice of the magnitude c1 may be utilized for inproving the convergence.

For this purpose c1 must be chosen such that for each value of ~w the

error due to the assumed (inexact) values of ~ and A/b is a ~,

Since @ itself depends little on A/~ it is
the condition of little variation of @ with X2.
small dependence of the functions 19/5 and k on
in the argument Al on which they depend, ~.o,
approximate expression

sufficient to set up
Neglecting the relatively
h, that is, setting
we obtain the

In order that
to zero, whence we

-1- c.

4 = Constant the coefficient of A2 must be equal
obtain

.
This dependence of c1 on ‘~ in a wide interval of change of

the argument (and practically independent of A/5) is close to a linear

one. For @w = A0.1 we obtain c1 = 9.35 for ~= 1 ,(c1= 9.12 for

A2
c1 = 9.7

A—=
8’

for ~= 0.5). For ~w = 1 we obtain Cl = 6.26.

Rounding off the last value to c1 . 6 we apply the linear relation

cl = 9*5 - 3.5% (8.7)

Finally multiplying the equation of energy (equation (4.17)) in nondimension
.

form termby term by 2@ (6 = ~) and integrathg as linear we obtain
.
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where

~a CT =Oforz=o.

The computation of the dynamic and thermal layers by eqyations (8.5) ~
and (8.9) can be carried out in this sequence. We consider, together
with the parameter X2, the analogous composite parameters

By egptions (6.9) end (6.u) represented in the fo~

(%A12 + 12A~ + 14q2.

there are constructed for the given

the dependence of A2 on A2 ~ for

dependence of ~A on k2e for various Vahes of ~. The magnitudes
. taken as initial in the computation by formula (8.5) are determined from

value of ~ auxiliaxy graphs of

various values of X2A and for the

.
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k(~)o=o -the initial &ta. If ~#0 l?or~=O, there are taken the values

end (A/5)0 = 1. If ~ = O for ~ = O, there can be taken as the
initial tiues the ~dues of (X2)O xd (hPA)~ = (fJ/~)02(~)o accordiw

to figure 2. BY thevalues of the functions F(z), A2*(Z) of
.

that is,

the first approximation using the initial value (A/b). (for the-succeeding
approximations it is ccmvenient to use the initial values of X2A), b(x)

of the first approxhmtion is found wii~ the aid of the graph. =her,
hy equation (8.9) $here @ ccmputed e(x), that is, be(z) of the first

approximation, making use of A2(=) of the first approximation end (A/@O

(in the succeeding approximations there is used the functicm ~(=) following
end A2A(Z) preceding). ILrOmthe values of h29(Z) ~dh2(S} with the aid

of the ‘&a@ there is obtdned L2A(Z). In those cases where mere is a

considerable change in the ratio A*/$ (or the function Tw(~)) the
computation must be conducted over segments. The required data for each
succeeding se~nt are taken equal to the correspon~fng v~ues obtained
at the end of the preceding segment. The local Nusselt number (that is,
the coefficient of heat transfer ~/to* reduced to nondimensional form)
@ the coefficient of fricticm are found.frm the equations

.

.

which agrees with the equation of L. G. Idtsianeky and A. A. Dorodnitsyn
for the computation of the lamlnar Iayer without heat transfer (reference 6).
& the absence of heat transfer and for small Mach znmiberswe again
obtain from this the quadrature

earlier derived by us on the basis of the method of
the I.amlnarlayer-in am
Flota, No. -, 1942.)

Incompressiblefluid. (See

)U*

P
//

~P-ausen for
Tel&nlka Vozdushnogo

.

.
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.

Pol

The

small Mach nunibersequations (8.5) and (8.9),assumethe fomn

(Ju
c-1

()

Ummo
@d% R=—

u— l+j
(8.12)

(8.13)

9. Dependence of the Reynolds Nuniber ~ on

the Parameters of the Flow

Taking account of the fact that aocording to the equation of state
P@

= — we represent the peremeter ~ in the form
~ol

parsmeter Rol is eqyessed directly in terms of the Reynolds

(9.1)

UA u
number R= = — and the Mach nuniber & = —a of the approaching

~m am
fluw. Z&em equations (3.3) to (3.5) we fins

Rol =%+
co

In the case
~ = RO1 = Roo.

(9.2)
of subsonic (subcritical)velocities we have
For supersonic velocities the ratio p~/pol is

found from the condition of a line of a flow passing through an oblique
shock wave (or a head wave) at the leading edge of the body. Considering
each surface of the profile separately we denote by 130 the sz@e whioh

. the tangent to the surface of the airfoil at any point makes with the
direction of the
which the normal

z direction. from

velocity of the undisturbed flow and, by q the angle
to the surface of discontinuity makes with the same
the equations of the oblique shock wave we obtain
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1/2(K + l)l&2sin 293
tan(cp+130)=*

1 + 1/2(K-1 )lQ2cos2(p

k the ease of a head wave in front of the body the
velocity after the discontinuity (for the fluw line
be considered to coincide with the direotion of the
discontinuity; in equatim (9.3) there is in this case to be substituted
l?=o~

R+l/

(9.4)

direction of the
at the profile) may
velocity before the

10. Boundary Layer in the Flow of a Gas with Axial Synmetry

For any axial flow about a body of revolution the integral relations
of’the impulse and energy have the following form:

~ J%
dxo

cppu(t* - tO*)r dy = -q~

(10.1)

(10.2)

In these equations the usual simplificationswere ma~e; x is the distance
along the wc of the meridional section, d the distance &long the
nomal to the surface, and r(x) the radius of the cross section of the
body of rotation (the change of the radius vector within the boundary
layel is neglected). The boundary conditions of the problem and also tha
assumptions with regard to the external flow are taken to be the same
as in section 1. Sstting up expressions for T, p, p, and ~ as in
sections 2eand 3 and introducing the new independent variable q by
fozmula (4.9) we obtain the integral relations of the nbmenta and energy
in the variables x, q:
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.

.

~+d ~t tow*
=t$+@3+~e=

% (T= 2L~
m– u o Pooucpto* L’ )= $and SO forth (10.4) “

(L is a characteristic -mien, for eqle, the le- of We bo@
of rotation?) Restrictiu o~selves to tie case p = 1 and t~iw ‘he
expressions (6.1) and (6.2) we obtain a closed system of equations
(10.3), (10.4), (6.9), -d (6.u) tie solution of which We =tte (for the ,
case where there is no shock wave) in the form

-1

1

&’(Tw - 1)2#

where

r c1

c 1 -h #= I32%.0(1-62)

The method of

J %x(-j

computation does not differ from the case of the
twwimensional flow. For the coefficients of’the heat tramsfer and
friction the equations (8.I-0)an~ (8.H) r~in~~id~ fi the CaSe Of
the internal problem (flow in nozzles) the Nusselt number and the
friction coefficient sre determined by the equations
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whars ~oo is the coefficient of heat conductivity corresponding to
the temperature TOO.

III. TURBULENT BOUNDARY LAYER IN TEE ERESENOE OF EEAT

TRANSFER BWWEENTHE GAS AND WALL

11. Ihrdamental Assumptions

The functions H, %s ‘~s ad qw entering eqyations (4.15)

and (4.16) =e determinedly equations (4.I.2),(4.14), (4.5), and (4.7)
which express them as functions of $ amd 6’ through the medium of the
velocity profile and the stagnation temperature-drop profile. The
pressnt state of the

7
roblem of’turbulence does not permit representing

the velocity profile and also the temperature.profile) by a single
equation which holds true from the wall to the boundary-layer lt!rdt.
The fundamental dynamic sad thermal characteristics of the turbulent
layer can nevertheless be ccanputedwith am aocuracy which is sufficient
for ractical purposes.

7
A fortunate property of ecfze.ti’ms(4.15)

and 4.I.6)which cam be predicted on the basis of the results with
respect to noncompressible fluids is that the functions Esnd~
change very little over the length of the turbulent layer and the
functions ‘rW and qv connected with O and f3 by the equations are

little sensitive to the actual conditlonawhioh prevail at a given section
of the boundary layer. Hence H and ~ (and aho magnitudes amalogous
‘tothem) can be taken as constant over x and the relations between TV
and o (the resist~ce law) and between ~ and 6 (the heaWmanefer

law) can be set up starting fra the assumption that the conditions at
the given section of the boun- layer do not differ from the conditions
on the flat plate. On the basis of the derivation of these supplementary
equations we assume the simple soheme of l&m& according to which the
saction of the boundary layer is divided into a purely turbulent
“nucleus of the flow” and a “laminar sublayer” in tmmediate contact
with the wall. & the latter the turbulent friction and the temperature
drop are small by capmison with the molecul=. We assume that in the
turbtient “nucleus” the frictional stress is expressed by the formula
of Prandtl:

2
T

()

. # g

w
(11.1)

.

where 7 is the length of the mixing path. fi other words, In
2 ~. It follows directly fromequations (1.1) and (1.3) we set G = P7
@

.
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this in view of the fact that the
~ = CPG that the e~ression for

27

,.

turbulence assumption of Wsmitl gives
the heat trsmsfer is

(U.*)

The thickness 5Y7 of the larninarsublayer of the dymamic boundary

layer, ecpil for P =-’1 to the thickness %2 of

is detemined by the critical Reynolds number (the

the thermal sublayer,

I&m& criterion)

(11.3)

where ul is the velocity on the boundary of the lhminar sublayer, Pw
and Ww are the density and viscosity at the wall.

12. Derivation of the Resistsmce Law

Assuming that as in the case of the noncompressible fluid a linear
variation of the velocity in the laminsx sublayer is permissible on
account of the smaU thiclmess, we have

(12.1)

fiaeqmtions (12.3) and (12.1) we obtain

G %1,. ~ (12.2)
%7

k equation (12.2) we pass to the variable ~. Near the waU on account
of the smallness of the t?rms ii2 smd t*/tO* we have
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.

where 5I = Al is the thickness of the laminar subhyer for the vsriable q.
ltzrther,

.

K

Pw =P02 *(1 -@)K-l, ~=llooq”

Substituting these expressions in equation (12.2) we obtain

Nor the fundamental parameters of
introduced the notation

the dynsmk layer there is here

K

(12.4)

(12.5)

Equation (12.1) is with the aid of eqpations (3.2) and (4.9) transformed
into the form

2
T

Y)
.p@q*, ?2 =

22

[
l-ap+(~-l)(h t*/t~*]3

3tc

(1 -&) K-l (12.6)

Sinoe for smaU q the terms li2 and t*/to* are small end the mixing
path 2 = @ (k= O.391) where the coordinate y & expressed according
to equation (12.3), the “generalized”mixing path 2 near the wall is
a linesr function of q:

Ic

~ = h L--&(1 - nQ)2(’K-1) (12.7)

h deriving the resistance law in sm incompressible fluid a linear
mixing-path distribution and a mnstant frictional stress are assumed
for the entire section of the boundary layer, from the wall.to the
outer bouniiary. Actually the mixing path increases at a considerably
slower rate than aooording to the linear law and the friction drops to
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cuter boundary of the layer is approached.. Th9 assumptions
opposite directions and lead to a satisfactory relation
pmvameters R$ and g.

Carrying over this fundamental idea of the logarithmic method into
our present theory we set T = T.r in equation (12.7) end assume

the linear law (equation (12.7)) for the entire section of the boundary
layer. We thus asmnue that as in the case of the nonccmqressible fluid
there will be
button of T
we obtain the

lkan equations
of the lsmhar

a mut~@. compensation of the errors ccmmitted in the distri-
mi Z. Iirbe@ating equaticm (12.6) between ~ and IS
9.pproximatevelocity profile:

lb~;=l+~ ~ (12.8)

(12.1) and (12.4) we obtain the velocity at the boundary
&blayer

.
The condition of the equality
lsminar flows on the bcundery

.

.

‘1 a—=-

of the velocities of the turbulent amd
of the sublayer gives

(12.10)

M&ing use of the velocity profile (u.8) in equations (4.12) we obtain

(12.11)

Eliminating from equation (12.10) and the first of relations (12.11) the
auxiliary variable- 8, we obtain the resistemce

We obtain
psnmeter H:

R~ =
()

-nkc ~ 2CITW e
kg

incidentally also the approximate

H
5* 1=—=
19 1- 2/kg

law:

(12.12)

expression for ttie

(12.13)
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13. Derivation of the Eeat4b5.nsfer Law

Xn this section we shsll give a generalization to the case of a
gas moving with large velocities of the heatiransfer law earlier derived
~y us (re~erence h)-for & inccm&essible fl~d.

We construct the function

For the turbulent nucleus of the flow we have

!I* =%$=
Ttvmsforming this equation to the variable q we obtain

Neer the wall the -ction q* behaves like q,
from the constant value qw, and the mixing path

on ~ accordingto equation (12.7). The comon

(13.1)

(13.2)

3tc

(1 - @ )-1 .

(13.3) -

differs little#at is,
2 depends linearly

mechanism of the transfer
of heat and the-tr~-er of the momentum in the flows along solid walls
provides a basis in the derivation of the law of heat transfer for
assuming as before a constant vslue q* = ~ emithe linear law (equ&-
tion (12.7)) for the entire thiclmess of we ~e~ ~er~ Substituting the
expression for du/d~ obtained from equation (12.8) and integrating
equation’(13.3) frcm q to A we obtain the approximate profile for the
stagnation temperatures

**
—=1+

Q ~Q

*0*
cpto*Twk~ A

(13.4)
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Rrm equation (13.1), assuming a lfieer distribution of the stagna-
tion temperatures in the laminar sublayer, we find

t 2*
~w=ch—

p A@
(13.5)

where tz* is the stagnation temperature at the boundery of the lemin~
eublayer.

As the fundamental thermal characteristics of the boundary layer
we introduce the fol.lowlngparameters:

FrcEuequations (13.4) and (13.5) we obtain the stagnation temperature
on the boundary of the leminar sublayer

(13.7)

Equating the stagnation temperatures
sublayer aiiimaking use of condition

RA = Cl~ne~(k!T )k$

on the boundary of the laminar-
(12.4) we obtain

(RA = YZR~) (13.8) ‘

Substituting the expressions for u@ and t*/to* according to
equations (12.8) and (13.4) in equations (4.13) amd (4.’14)we obtain

llrom equations (U2.1O) and (13.8) it follows that ~. exp(k~T -k~)
BO that we have

(13.9) ;

(13.10)
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Eliminating from equations (13. 8) and (13.10) the auxiliary parameter A
we obtain the heat-transfer law

We obtain incidentally also the approximate expression for the
paraheter ~:

14. Solution of the Ecpation of the

-O Boun@ ~er

We represent eqpation (4.15) in the form

We make the ohange in variables (reference ~){

Differentiating this relation with
we obhai.n

:=’(i~-e$

respect to

(13.12)

Turbulent

(13.XL)

K

(l-m=% (14.1)

(14.2)

ii endusing equation (12.12)

( 1- 2&2g2
K=

)1- 2/kg + 2/ky
(14.3)

.

.
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mall

&z
=
ax+

equations (14.1) to (14.3) we obtain

The magnitudes H and K
layer are assumed constant with
as a known.function of Z then
respect to z.

which change little ~*ong the houndarY
respect to Z. If A jq is considered
equation (14.4) is a linear equation with

Assuming a constant mesm value of the ratio
A:= ~ over ~ certain

interval ~ <Z <=1 (in the first approx~tion ~e may for the entire
A+ *

turbulent layer assw h = ~= ~= H, whi6h holds for the plate),we

obtain the solution of eq.tion (14.4) in the forms

where

c =
[
Zz.y% ilG=i7 , c=K(H+l)+K(~-l)h

The constmts must

K = 1.20,

be taken equal to

H= 1.4, h= 1.4, (cl = 0.326; k= 0.391)

5S00 footnote (3) on page 19.
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After computation of the

of the veriables K, H, h =

NACA TM No. 1.229

dynsmic and thermal layer new mean values

%%— can be found and, if the deviations
R~

from the assumed vslues sme considerable,the computation is repeated.
E, for greater accuracy, the computation is conducted over segment~ the
valuas of the constemts for each succeeding se@nent are determined by
the values of R3, ~, Re, and ~ obtained at the end of the preceding

segment. In integrating from the point of the transition of the laminss?
Into the turbulent state,the magnitude (Z)X=YO is detemlned frcmthe

condition of equality of the initial value of Rfl to the vslue of ~

at the end of the laminar segment. Jm inte ating from the leading
edge, C!= O. rBy eqpatio~. (12.2) smd (14.2 the auxiliary graphs of the

functions log (R8TW%1-L. ~d log z as functi~ ‘f ‘~ Cmbe-—
constructed once for &U..

The local

2TW
c-f=-=

PJJ.2

For small Mach

friction coefficient is found from the equation

numbers equation (14.5) assumes the

‘= (Tw/TO)2(U@w)c

where

15.

We

[C+%-vw-k)>
f Orm

C+l
\ 1dz

G&2.

Solution of the Equation of”the Turbulent

represent equation (4.I.6) in the form

Ther.md Iayer

1

(14.7)

.

.
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Carrying out the change in variables (reference 4-)

(15.2)

smd making use of the hea~transfer law (13.1) we find

(15.3)

The solution has the form*

[

~, . wo2k2

T-
l(TW -1) ~;&F)&XZ

‘T = ~%(~ - l)% c1 ~

(15.4)

‘The equation of energy (15.1) in connection with we relation
between Re end CT in the fomn (13.11) in the case T = Constant is

am equation with separable vsriables so that together with the solution
in the form (15.4) we can use its accurate solution

(for ~=O, C=O)
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The constsmt ~ must be taken equal to 1.15 (with subsequent check
by the results of the computation of the therna2 layer). ‘The magnitude
(gT)~~ is detemnined by equation (13.11) from the condition of the

equality of the value of Re at the start of the turbulent region to its
value at the end of the laminer section. Zc integrating frcmthe leading
edge, “C?= O. me auxiliary graph of the function log zT against k~T

can be constructed once for all.

The local heat

@
m===

transfer is found frcm the equation

For small values of-the ~ch number equation (15.4) assumee

z T.

16. Determination of the Profile wag for Subsonic Velocities

The drag of a wing of in!?initespan (over unit length of span) is
obtained frcm the momentum theorem in the foz?m

where
Y 19m denotes the sum of the momentum-loss thiclmesses referred
b

to the upper and lower surfaces and computed at a great distance frcm
the wing where 13+cu and U~U~ For the drag coefficient we have

(16.2)
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The problem consists in expressing
thermal characteristics of the boundary
Since in the wake behind the body Tw =

and (4.17) for the wake assume the form

3= in terms of the dynamic
layer at the trailing edge.

37

and

0EUM3.N = O, equations (4.16)

We introduce the notation

=d represent equatim (16.3) in the form

&~_ -(2+ G) :=&ln _8iE -

Wtegrating this equation with respect to Z frcm the trailing edge
(denoted.by the subscript 1) to E = ~ we obtain

(16.3)

(16.4)

(16.5)

.(16.6)

(16.7)

For ~.x O, ‘~ = 1 the function G(z) goes over into H(X). For.-
an incompressible fluid however the hypothesis of S@re ~d Young
(reference 8) on the linear chemcter of the dependence ln(u/um) on H
holds:

b(u/U.) . I@@.)

H.-H I&-Hl
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M&ingthe analogou8 assumption

ln(u/Uc8) ln(@Le)

G.-G = ~-~

we obtain~

s=
h ?91 (—=2+

We write down the expression for

H1 +ti12

%==
1

It is easily seen that ~= 1 ad ~ = 1, henoe

rum m NO. x229

.

(16.8)

(16.9)

(16.10)

(16,u)

7The seineresult cam be arrived at from the.following elementary
considerateions. Equation (16.7) may be represented in the form

where B& is

61 and UW.
a certain mean value of the velocity ~ that lies between
For the usual profile shapes however the ratio fil~. is,

in general.,near unity
magrdtude C& –_~ by
mean value of ~ the
not large. Taking the
equation (16.9).

and since the magnitude 2 + Gl exceeds the -
several times,therefore for my choice of the
relative error in the determination of ~m is
gecmetric mean i% =~~w we again arrive at
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Replacing in eqpation (16.9) ~ and Gm by their values, we obtain

.

39

(16.12)

Fran equation (10.4) it follows that 6U(TW - 1) = Constant, hence
—-

For m Mach nmibers eqymtions (16.2), (16.12), and (16.13) assume
the form

17. Boundary Layer in a Gas Flow with Axial Symmetry

(16.13)

For the turbulent flow about a body of rotation the equations (10.1)
and (10.2) in the vmiables x, y and the trsmsfozmed equations (10.3)
and(10.4) remain valid. Restricting ourselves to the case of the I
Rmndtl number P = 1 and introducing the parameters R~, ~, RG, and ~ ,

we represent the integral relations in the form
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Making use of the ihag law equatim (I!2.12),the hea%trsmsfer
equation (13 .I1 ), effecting the change in variables

assuming the little changing magnitudes H,
‘J % ~%nstant with

to ~, and also a oonstant mean value for the ratio — = h, we obtain
d

a system of linear equations the solution of which has the form

(17.1)

(17.2)

law

respect

ZT =

K

1(l-+%-ii (17.3)

-i

.

.
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For the frictional stress and the Nusselt nmbe~ equations (14.6)
emd (15.5) remain k foroe. h the case of the internal problem

the integral relations of

(17.5)

theThe theory presented, in particulm
momenta and ener~ established in part I, permits-determining the
thermal and @qsmic characteristics of the boundary layer at a curved
wall in the most general oases, that is, in tie pres=ce of etiern~
emd internal heat interchemge. The ccunputationof the boundary layer
by the equations derived In parts II and III on the assumption of the
Premdtl nmiber P = 1 permits fi.ntingdirectly for arbitrary l&ch numbers .
(excluding the intervel frcm ~ = ~cr to Mm = 1):

(1) The c~efficients of the heat transfer fram the wall to the gas
for a given maintained temperature of the wall through heat supplied
outside the body and the coefficients of heat transfer frcm the gas to
the wall, that is, required for maintaining the heat conduction within
the body at the given temperature of the wall.

(2) The distribution of the frictional stress along the wall end
the profile drag of the wing (in the ease M. < M%r ) for arbitrery

ra~io of the stagnation temperatures and those of the wall.

For smgdllvelocities the obtained equations e~ress the dependence
of the heat transfer ad the drag on the ratio of the absolute temper-
aturesof the flow and the wall (the effeot of the impressibility and
the chemge of the physical constants due to the heat interchange).

In conclusion we give the results of mnputation of a single exsmple.
h figure 3 is given the distribution of the velocities of the etiernal
flow for the supersonic flow about a body witi two sharp edges. The
contour of the body and the position of the discontinuity are also shown.
The fluw was computed by the method of Donov (reference 9). ti figure 4
are given the curves for the Nusselt nuniber N which assure the uniform
cooling of the surface up to the temperature ~ = 0.25T00 for

Rm = 15X106, l&=2, ma %= 6 for the hminar (lower curves) emd
turbulent (upper curves) regimes.

Tr~slatedby S. Reiss
National Advisory Ccmmittee
for Aeronautics
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Compression shock

Figure 1.
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